login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064412
At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage.
7
1, 5, 14, 32, 60, 103, 160, 238, 335, 459, 606, 786, 994, 1241, 1520, 1844, 2205, 2617, 3070, 3580, 4136, 4755, 5424, 6162, 6955, 7823, 8750, 9758, 10830, 11989, 13216, 14536, 15929, 17421, 18990, 20664, 22420, 24287, 26240, 28310, 30471, 32755, 35134, 37642
OFFSET
1,2
COMMENTS
Number of unit triangles at n-th stage = 3n(n-1)/2 + 1, A005448.
REFERENCES
Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88.
FORMULA
G.f.: (1+x+x^2)(1+2x+x^2+3x^3)/((1-x)^2(1-x^2)(1-x^4)).
a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - Len Smiley, Oct 07 2001
a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - Luce ETIENNE, Jun 27 2014
EXAMPLE
a(4) = 32: 19 triangles of side 1, 10 of side 2 and 3 of side 3.
MAPLE
A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # Wesley Ivan Hurt, Jun 27 2014
MATHEMATICA
CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 5, 14, 32, 60, 103, 160, 238}, 50] (* Harvey P. Dale, Apr 12 2016 *)
PROG
(PARI) a(n)=polcoeff(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^2*(1-x^2)*(1-x^4))+x*O(x^n), n)
CROSSREFS
Cf. A056640.
Sequence in context: A070134 A295344 A219902 * A211803 A299275 A266759
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Sep 29 2001
STATUS
approved