login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056640 At stage 1, start with a unit square. At each successive stage add 4*(n-1) new squares around outside with edge-to-edge contacts. Sequence gives number of squares (regardless of size) at n-th stage. 5
1, 5, 18, 42, 83, 143, 228, 340, 485, 665, 886, 1150, 1463, 1827, 2248, 2728, 3273, 3885, 4570, 5330, 6171, 7095, 8108, 9212, 10413, 11713, 13118, 14630, 16255, 17995, 19856, 21840, 23953, 26197, 28578, 31098, 33763, 36575, 39540, 42660, 45941, 49385, 52998 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of unit squares at n-th stage = n^2 + (n-1)^2 (A001844).

First differences are in A255840. - Wesley Ivan Hurt, Mar 13 2015

REFERENCES

Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88.

LINKS

Table of n, a(n) for n=1..43.

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

G.f.: x(5x^2+2x+1)/((1-x^2)(1-x)^3).

a(n) = (8*n^3-2*n+3-3*(-1)^n)/12. - Luce ETIENNE, Aug 21 2014

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Colin Barker, Sep 29 2014

G.f.: x*(5*x^2+2*x+1) / ((x-1)^4*(x+1)). - Colin Barker, Sep 29 2014

MAPLE

A056640:=n->(8*n^3-2*n+3-3*(-1)^n)/12: seq(A056640(n), n=1..50);

MATHEMATICA

Table[(8*n^3 - 2*n + 3 - 3*(-1)^n)/12, {n, 30}] (* Wesley Ivan Hurt, Mar 13 2015 *)

PROG

(PARI) Vec(x*(5*x^2+2*x+1)/((x-1)^4*(x+1)) + O(x^100)) \\ Colin Barker, Sep 29 2014

CROSSREFS

Cf. A255840.

Sequence in context: A236364 A000338 A212343 * A272703 A272736 A273532

Adjacent sequences:  A056637 A056638 A056639 * A056641 A056642 A056643

KEYWORD

nonn,easy

AUTHOR

Robert G. Wilson v, Aug 21 2000

EXTENSIONS

More terms from Colin Barker, Sep 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:25 EDT 2019. Contains 328302 sequences. (Running on oeis4.)