login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000338
Expansion of x^3*(5-2*x)*(1-x^3)/(1-x)^4.
(Formerly M3877 N1589)
3
5, 18, 42, 75, 117, 168, 228, 297, 375, 462, 558, 663, 777, 900, 1032, 1173, 1323, 1482, 1650, 1827, 2013, 2208, 2412, 2625, 2847, 3078, 3318, 3567, 3825, 4092, 4368, 4653, 4947, 5250, 5562, 5883, 6213, 6552, 6900, 7257, 7623, 7998, 8382, 8775, 9177, 9588, 10008, 10437, 10875, 11322, 11778
OFFSET
3,1
REFERENCES
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
FORMULA
a(n) = 3*A095794(n-2), n>3. - R. J. Mathar, May 30 2022
G.f.: (1+x+x^2)*(5-2*x)*x^3/(1-x)^3. - Simon Plouffe in his 1992 dissertation
Sum_{n>=3} 1/a(n) = log(3)/5 + Pi*sqrt(3)/45 = 0.3406424... - R. J. Mathar, Apr 22 2024
a(n) = 5*A005448(n-2) -2*A005448(n-3). - R. J. Mathar, Apr 22 2024
MAPLE
ff := n->9/2*n^2-15/2*n; seq(ff(n), n=3..60); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001, sequence without a(3).
MATHEMATICA
nn = 100; CoefficientList[Series[(5 - 2 x) (1 - x^3)/(1 - x)^4, {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
LinearRecurrence[{3, -3, 1}, {5, 18, 42, 75}, 60] (* Harvey P. Dale, Sep 20 2016 *)
CROSSREFS
Sequence in context: A276819 A236364 A352368 * A212343 A056640 A272703
KEYWORD
nonn,easy
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
STATUS
approved