|
|
A000336
|
|
a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n.
|
|
5
|
|
|
1, 2, 3, 4, 24, 576, 165888, 9172942848, 21035720123168587776, 18437563379178327736384102280592359424, 590180110002114158896983994712576414865667267958188575935810179040280576
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The next term has 139 digits. - Harvey P. Dale, Jan 21 2019
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..15
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
|
|
FORMULA
|
a(n) = 2^A251656(n) * 3^A001631(n-1). - Vaclav Kotesovec, Feb 02 2016
a(n) = a(n-1)^2 / a(n-5), for n > 5. - M. F. Hasler, Apr 22 2018
|
|
MAPLE
|
A000336 := proc(n) option remember; if n <=4 then n else A000336(n-1)*A000336(n-2)*A000336(n-3)*A000336(n-4); fi; end;
|
|
MATHEMATICA
|
t = {1, 2, 3, 4}; Do[AppendTo[t, t[[-1]]*t[[-2]]*t[[-3]]*t[[-4]]], {n, 5, 15}] (* T. D. Noe, Jun 19 2012 *)
nxt[{a_, b_, c_, d_}]:={b, c, d, a b c d}; NestList[nxt, {1, 2, 3, 4}, 10][[All, 1]] (* Harvey P. Dale, Jan 21 2019 *)
|
|
PROG
|
(PARI) a(n, a=[24, 1, 2, 3, 4])={for(n=6, n, a[n%5+1]=a[(n-1)%5+1]^2\a[n%5+1]); a[n%5+1]} \\ M. F. Hasler, Apr 22 2018
(PARI) first(n) = n = max(n, 5); my(res = vector(n)); for(i=1, 4, res[i] = i); res[5]=24; for(i = 6, n, res[i] = res[i-1]^2 / res[i - 5]); res \\ David A. Corneth, Apr 22 2018
|
|
CROSSREFS
|
Cf. A000301, A000308, A001631, A003586, A251656.
Sequence in context: A329566 A329532 A265484 * A287433 A235041 A080613
Adjacent sequences: A000333 A000334 A000335 * A000337 A000338 A000339
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|