OFFSET
1,2
COMMENTS
a(n) is the number of solutions to the inequality sum_{i=1,2,3...} x_i^(1/2)<=n under the constraint that x_i are integers where 1<=x_1<=x_2<=x_3<=x_4<=... [From R. J. Mathar, Jul 03 2009]
REFERENCES
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. K. Agarwala, F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
EXAMPLE
a(n=3)=15 counts the solutions 1^(1/2)<=3, 1^(1/2)+1^(1/2)<=3, 1^(1/2)+1^(1/2)+1^(1/2)<=3, 1^(1/2)+2^(1/2)<=3, 1^(1/2)+3^(1/2)<=3, 1^(1/2)+4^(1/2)<=3, 2^(1/2)<=3, 2^(1/2)+2^(1/2)<=3, 3^(1/2)<=3, 4^(1/2)<=3,.., 8^(1/2)<=3 and 9^(1/2)<=3. [From R. J. Mathar, Jul 03 2009]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
2 more terms from R. J. Mathar, Jul 03 2009
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved