The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022570 Expansion of Product_{m>=1} (1+x^m)^5. 2
 1, 5, 15, 40, 95, 206, 425, 835, 1575, 2880, 5121, 8885, 15095, 25165, 41240, 66562, 105945, 166480, 258560, 397235, 604162, 910325, 1359680, 2014235, 2961000, 4321283, 6263360, 9019555, 12908945, 18367805, 25990149, 36581200, 51228175, 71393555, 99037095, 136775685, 188091960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8. FORMULA a(n) ~ (5/3)^(1/4) * exp(Pi * sqrt(5*n/3)) / (16 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015 a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017 G.f.: exp(5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018 MATHEMATICA nmax=50; CoefficientList[Series[Product[(1+q^m)^5, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *) PROG (PARI) x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^5)) \\ Indranil Ghosh, Apr 03 2017 (MAGMA) Coefficients(&*[(1+x^m)^5:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018 CROSSREFS Cf. A000009. Column k=5 of A286335. Sequence in context: A262295 A034182 A132985 * A152881 A000333 A291225 Adjacent sequences:  A022567 A022568 A022569 * A022571 A022572 A022573 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 13:01 EDT 2020. Contains 334748 sequences. (Running on oeis4.)