login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224476 (2*16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 1. 4
6, 1, 251, 3751, 68751, 718751, 9218751, 24218751, 74218751, 8574218751, 13574218751, 663574218751, 5163574218751, 30163574218751, 980163574218751, 2480163574218751, 37480163574218751, 987480163574218751, 487480163574218751, 65487480163574218751 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the unique positive integer less than 10^n such that a(n) + 2^(n-1) + 1 is divisible by 2^n and a(n) - 1 is divisible by 5^n.

LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Trimorphic Number

Index entries for sequences related to automorphic numbers

FORMULA

a(n) = (A224474(n) + 10^n/2) mod 10^n.

PROG

(Sage) def A224476(n) : return crt(2^(n-1)-1, 1, 2^n, 5^n)

CROSSREFS

Cf. A033819. Converges to the 10-adic number A063006. The other trimorphic numbers ending in 1 are included in A199685 and A224474.

Sequence in context: A009330 A266302 A183284 * A123147 A119831 A224842

Adjacent sequences:  A224473 A224474 A224475 * A224477 A224478 A224479

KEYWORD

nonn,base

AUTHOR

Eric M. Schmidt, Apr 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 25 13:56 EDT 2017. Contains 285414 sequences.