OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|n} phi(d)^3.
From Seiichi Manyama, Mar 13 2021: (Start)
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^2.
G.f.: Sum_{k>=1} phi(k)^3 * x^k/(1 - x^k). (End)
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^2 (p^(3*e)-1))/(p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^4/360) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.09123656748... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#]^3 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2020 *)
PROG
(PARI) a(n)=sumdiv(n, d, eulerphi(d)^3)
(PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^2); \\ Seiichi Manyama, Mar 13 2021
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^3*x^k/(1-x^k))) \\ Seiichi Manyama, Mar 13 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Benoit Cloitre, Dec 31 2020
STATUS
approved