login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338997
Number of (i,j,k) in {1,2,...,n}^3 such that gcd(n,i) = gcd(n,j) = gcd(n,k).
5
1, 2, 9, 10, 65, 18, 217, 74, 225, 130, 1001, 90, 1729, 434, 585, 586, 4097, 450, 5833, 650, 1953, 2002, 10649, 666, 8065, 3458, 6057, 2170, 21953, 1170, 27001, 4682, 9009, 8194, 14105, 2250, 46657, 11666, 15561, 4810, 64001, 3906, 74089, 10010, 14625, 21298, 97337, 5274, 74305, 16130
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} phi(d)^3.
From Seiichi Manyama, Mar 13 2021: (Start)
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^2.
G.f.: Sum_{k>=1} phi(k)^3 * x^k/(1 - x^k). (End)
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^2 (p^(3*e)-1))/(p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^4/360) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.09123656748... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#]^3 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2020 *)
PROG
(PARI) a(n)=sumdiv(n, d, eulerphi(d)^3)
(PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^2); \\ Seiichi Manyama, Mar 13 2021
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^3*x^k/(1-x^k))) \\ Seiichi Manyama, Mar 13 2021
CROSSREFS
Sequence in context: A300129 A191401 A363223 * A363951 A085069 A371163
KEYWORD
nonn,mult
AUTHOR
Benoit Cloitre, Dec 31 2020
STATUS
approved