login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (i,j,k) in {1,2,...,n}^3 such that gcd(n,i) = gcd(n,j) = gcd(n,k).
5

%I #51 Nov 15 2022 09:17:19

%S 1,2,9,10,65,18,217,74,225,130,1001,90,1729,434,585,586,4097,450,5833,

%T 650,1953,2002,10649,666,8065,3458,6057,2170,21953,1170,27001,4682,

%U 9009,8194,14105,2250,46657,11666,15561,4810,64001,3906,74089,10010,14625,21298,97337,5274,74305,16130

%N Number of (i,j,k) in {1,2,...,n}^3 such that gcd(n,i) = gcd(n,j) = gcd(n,k).

%H Amiram Eldar, <a href="/A338997/b338997.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d|n} phi(d)^3.

%F From _Seiichi Manyama_, Mar 13 2021: (Start)

%F a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^2.

%F G.f.: Sum_{k>=1} phi(k)^3 * x^k/(1 - x^k). (End)

%F From _Amiram Eldar_, Nov 15 2022: (Start)

%F Multiplicative with a(p^e) = 1 + ((p-1)^2 (p^(3*e)-1))/(p^2 + p + 1).

%F Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^4/360) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.09123656748... . (End)

%t a[n_] := DivisorSum[n, EulerPhi[#]^3 &]; Array[a, 100] (* _Amiram Eldar_, Dec 31 2020 *)

%o (PARI) a(n)=sumdiv(n,d,eulerphi(d)^3)

%o (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^2); \\ _Seiichi Manyama_, Mar 13 2021

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^3*x^k/(1-x^k))) \\ _Seiichi Manyama_, Mar 13 2021

%Y Cf. A000010, A029939.

%K nonn,mult

%O 1,2

%A _Benoit Cloitre_, Dec 31 2020