The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338906 Semiprimes whose prime indices sum to an even number. 16
 4, 9, 10, 21, 22, 25, 34, 39, 46, 49, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 121, 129, 133, 134, 146, 155, 159, 166, 169, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 289, 295, 298, 301, 303, 314, 321, 334, 335, 339 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. LINKS FORMULA A338906 \/ A338907 = A001358. EXAMPLE The sequence of terms together with their prime indices begins:       4: {1,1}      87: {2,10}    183: {2,18}    274: {1,33}       9: {2,2}      91: {4,6}     187: {5,7}     289: {7,7}      10: {1,3}      94: {1,15}    194: {1,25}    295: {3,17}      21: {2,4}     111: {2,12}    203: {4,10}    298: {1,35}      22: {1,5}     115: {3,9}     205: {3,13}    301: {4,14}      25: {3,3}     118: {1,17}    206: {1,27}    303: {2,26}      34: {1,7}     121: {5,5}     213: {2,20}    314: {1,37}      39: {2,6}     129: {2,14}    218: {1,29}    321: {2,28}      46: {1,9}     133: {4,8}     235: {3,15}    334: {1,39}      49: {4,4}     134: {1,19}    237: {2,22}    335: {3,19}      55: {3,5}     146: {1,21}    247: {6,8}     339: {2,30}      57: {2,8}     155: {3,11}    253: {5,9}     341: {5,11}      62: {1,11}    159: {2,16}    254: {1,31}    358: {1,41}      82: {1,13}    166: {1,23}    259: {4,12}    361: {8,8}      85: {3,7}     169: {6,6}     267: {2,24}    365: {3,21} MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; Select[Range[100], PrimeOmega[#]==2&&EvenQ[Total[primeMS[#]]]&] CROSSREFS A031215 looks at primes instead of semiprimes. A098350 has this as union of even-indexed antidiagonals. A300061 looks at all numbers (not just semiprimes). A338904 has this as union of even-indexed rows. A338907 is the odd version. A338908 is the squarefree case. A001358 lists semiprimes, with odd/even terms A046315/A100484. A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. A056239 gives the sum of prime indices (Heinz weight). A084126 and A084127 give the prime factors of semiprimes. A087112 groups semiprimes by greater factor. A289182/A115392 list the positions of odd/even terms in A001358. A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. A338911 lists products of pairs of primes both of even index. A339114/A339115 give the least/greatest semiprime of weight n. Cf. A000040, A001222, A024697, A037143, A112798, A300063, A319242, A320655, A332765, A338910, A339004. Sequence in context: A131368 A131457 A072525 * A107621 A098144 A109412 Adjacent sequences:  A338903 A338904 A338905 * A338907 A338908 A338909 KEYWORD nonn AUTHOR Gus Wiseman, Nov 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 02:33 EDT 2021. Contains 346367 sequences. (Running on oeis4.)