OFFSET
1,1
FORMULA
EXAMPLE
The sequence of terms together with their prime indices begins:
4: {1,1} 146: {1,21} 314: {1,37}
10: {1,3} 155: {3,11} 334: {1,39}
22: {1,5} 166: {1,23} 335: {3,19}
25: {3,3} 187: {5,7} 341: {5,11}
34: {1,7} 194: {1,25} 358: {1,41}
46: {1,9} 205: {3,13} 365: {3,21}
55: {3,5} 206: {1,27} 382: {1,43}
62: {1,11} 218: {1,29} 391: {7,9}
82: {1,13} 235: {3,15} 394: {1,45}
85: {3,7} 253: {5,9} 415: {3,23}
94: {1,15} 254: {1,31} 422: {1,47}
115: {3,9} 274: {1,33} 451: {5,13}
118: {1,17} 289: {7,7} 454: {1,49}
121: {5,5} 295: {3,17} 466: {1,51}
134: {1,19} 298: {1,35} 482: {1,53}
MAPLE
q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
numtheory[pi](i[1])::odd, l))(ifactors(n)[2]):
select(q, [$1..1000])[]; # Alois P. Heinz, Nov 23 2020
MATHEMATICA
Select[Range[100], PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
CROSSREFS
A338911 is the even instead of odd version.
A339003 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338909 lists semiprimes with non-relatively prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 20 2020
STATUS
approved