OFFSET
1,1
COMMENTS
EXAMPLE
The sequence of terms together with their prime indices begins:
6: {1,2} 95: {3,8} 202: {1,26}
14: {1,4} 106: {1,16} 209: {5,8}
15: {2,3} 119: {4,7} 214: {1,28}
26: {1,6} 122: {1,18} 215: {3,14}
33: {2,5} 123: {2,13} 217: {4,11}
35: {3,4} 141: {2,15} 219: {2,21}
38: {1,8} 142: {1,20} 221: {6,7}
51: {2,7} 143: {5,6} 226: {1,30}
58: {1,10} 145: {3,10} 249: {2,23}
65: {3,6} 158: {1,22} 262: {1,32}
69: {2,9} 161: {4,9} 265: {3,16}
74: {1,12} 177: {2,17} 278: {1,34}
77: {4,5} 178: {1,24} 287: {4,13}
86: {1,14} 185: {3,12} 291: {2,25}
93: {2,11} 201: {2,19} 299: {6,9}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
CROSSREFS
A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A056239 gives the sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
Cf. A000040, A001222, A014342, A024697, A062198, A112798, A300061, A319242, A320655, A338910, A339003.
Subsequence of A332820.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2020
STATUS
approved