OFFSET
2,1
COMMENTS
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
LINKS
Robert Israel, Table of n, a(n) for n = 2..10000
EXAMPLE
The sequence of terms together with their prime indices begins:
4: {1,1} 493: {7,10} 2809: {16,16}
6: {1,2} 551: {8,10} 3127: {16,17}
10: {1,3} 667: {9,10} 3481: {17,17}
15: {2,3} 841: {10,10} 3599: {17,18}
25: {3,3} 899: {10,11} 3953: {17,19}
35: {3,4} 1073: {10,12} 4189: {17,20}
55: {3,5} 1189: {10,13} 4489: {19,19}
77: {4,5} 1369: {12,12} 4757: {19,20}
121: {5,5} 1517: {12,13} 5041: {20,20}
143: {5,6} 1681: {13,13} 5293: {19,22}
187: {5,7} 1763: {13,14} 5723: {17,25}
221: {6,7} 1961: {12,16} 5963: {19,24}
289: {7,7} 2183: {12,17} 6499: {19,25}
323: {7,8} 2419: {13,17} 6887: {20,25}
391: {7,9} 2537: {14,17} 7171: {20,26}
MAPLE
P:= [seq(ithprime(i), i=1..200)]:
[seq(max(seq(P[i]*P[j-i], i=1..j-1)), j=2..200)]; # Robert Israel, Dec 06 2020
MATHEMATICA
Table[Max@@Table[Prime[k]*Prime[n-k], {k, n-1}], {n, 2, 30}]
CROSSREFS
A024697 is the sum of the same semiprimes.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A037143 lists primes and semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2020
STATUS
approved