login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373630
a(n) is the n-th semiprime after the n-th prime.
2
4, 6, 10, 15, 25, 26, 35, 38, 49, 57, 58, 74, 85, 86, 91, 95, 118, 119, 123, 133, 134, 143, 146, 161, 183, 185, 187, 201, 202, 205, 218, 221, 237, 247, 265, 267, 278, 295, 299, 302, 309, 314, 326, 327, 334, 335, 362, 393, 395, 398, 403, 413, 415, 427, 446, 453, 466, 469, 473, 481, 482, 497, 519
OFFSET
1,1
LINKS
FORMULA
a(n) = A001358(n + A072000(A000040(n))).
EXAMPLE
a(5) = 25 because the 5th prime is 11 and the first 5 semiprimes > 11 are 14,15,21,22,25.
MAPLE
N:= 10^4: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..N, 2)]):
S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]): nS:= nops(S):
f:= proc(n) local j;
j:= ListTools:-BinaryPlace(S, P[n]);
if j + n <= nS then S[j+n] else fail fi
end proc:
R:= NULL:
for i from 1 do
v:= f(i);
if v = fail then break fi;
R:= R, v
od:
R;
MATHEMATICA
seq={}; Do[i=Prime[n]+1; cnt=0; While[cnt<n, If[PrimeOmega[i]==2, cnt++]; i++]; AppendTo[seq, i-1], {n, 63}]; seq (* James C. McMahon, Jun 15 2024 *)
PROG
(Python)
from math import isqrt
from sympy import primepi, prime
def A373630(n):
p = prime(n)
q = n+int(sum(primepi(p//prime(k))-k+1 for k in range(1, primepi(isqrt(p))+1)))
def f(x): return int(q+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
m, k = q, f(q)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Jun 11 2024
STATUS
approved