login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373632
Number of (binary) heaps where n is the sum of their length and the size of the element set [k].
3
1, 0, 1, 1, 2, 4, 8, 17, 41, 103, 282, 792, 2239, 6680, 21143, 70647, 245357, 871255, 3202552, 12334046, 49635128, 205403510, 856780528, 3601169551, 15507530896, 69267381313, 320345619798, 1518428936730, 7345400773513, 36469929240960, 186875135258481
OFFSET
0,5
COMMENTS
These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty).
LINKS
Eric Weisstein's World of Mathematics, Heap
Wikipedia, Binary heap
FORMULA
a(n) = Sum_{j=0..floor(n/2)} A373451(n-j,j).
EXAMPLE
a(0) = 1: the empty heap.
a(2) = 1: 1.
a(3) = 1: 11.
a(4) = 2: 111, 21.
a(5) = 4: 1111, 211, 212, 221.
a(6) = 8: 11111, 2111, 2121, 2211, 2212, 2221, 312, 321.
a(7) = 17: 111111, 21111, 21211, 22111, 22112, 22121, 22122, 22211, 22212, 22221, 3121, 3211, 3212, 3221, 3231, 3312, 3321.
(The examples use max-heaps.)
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
(g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)
)(min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k):
a:= n-> add(T(n-j, j), j=0..n/2):
seq(a(n), n=0..30);
CROSSREFS
Antidiagonal sums of A373451.
Sequence in context: A104879 A366220 A331686 * A156805 A200542 A272105
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 11 2024
STATUS
approved