login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (binary) heaps where n is the sum of their length and the size of the element set [k].
3

%I #19 Jun 14 2024 11:25:43

%S 1,0,1,1,2,4,8,17,41,103,282,792,2239,6680,21143,70647,245357,871255,

%T 3202552,12334046,49635128,205403510,856780528,3601169551,15507530896,

%U 69267381313,320345619798,1518428936730,7345400773513,36469929240960,186875135258481

%N Number of (binary) heaps where n is the sum of their length and the size of the element set [k].

%C These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty).

%H Alois P. Heinz, <a href="/A373632/b373632.txt">Table of n, a(n) for n = 0..710</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Heap.html">Heap</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a>

%F a(n) = Sum_{j=0..floor(n/2)} A373451(n-j,j).

%e a(0) = 1: the empty heap.

%e a(2) = 1: 1.

%e a(3) = 1: 11.

%e a(4) = 2: 111, 21.

%e a(5) = 4: 1111, 211, 212, 221.

%e a(6) = 8: 11111, 2111, 2121, 2211, 2212, 2221, 312, 321.

%e a(7) = 17: 111111, 21111, 21211, 22111, 22112, 22121, 22122, 22211, 22212, 22221, 3121, 3211, 3212, 3221, 3231, 3312, 3321.

%e (The examples use max-heaps.)

%p b:= proc(n, k) option remember; `if`(n=0, 1,

%p (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)

%p )(min(g-1, n-g/2)))(2^ilog2(n)))

%p end:

%p T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k):

%p a:= n-> add(T(n-j, j), j=0..n/2):

%p seq(a(n), n=0..30);

%Y Antidiagonal sums of A373451.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Jun 11 2024