login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373629
a(n) = sum of all numbers whose binary expansion is n bits long, starts and ends with a 1 bit, and contains no 00 bit pairs.
1
1, 3, 12, 39, 131, 426, 1389, 4503, 14596, 47259, 152991, 495162, 1602521, 5186067, 16782828, 54310911, 175754731, 568755690, 1840534485, 5956098495, 19274345876, 62373103443, 201843619047, 653179698234, 2113733947681, 6840186809691, 22135309606524, 71631366769623
OFFSET
1,2
COMMENTS
The numbers that are summed are the terms t of A247648 in the range 2^(n-1) <= t < 2^n.
There are Fibonacci(n) of these numbers (per Grimaldi's exercise, in which closed walks on the u-v graph there are a 1 bit at a visit to u and a 0 bit at a visit to v), and this allows recurrences etc. for a(n).
REFERENCES
R. Grimaldi, (2012). Fibonacci and Catalan Numbers: An Introduction, page 80, Example 12.1.
FORMULA
a(n) = Sum_{i=F(n+1)..F(n+2)-1} A247648(i) where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) + a(n-2) + F(n)*2^(n-1).
a(n) = 3*a(n-1) + 3*a(n-2) - 6*a(n-3) - 4*a(n-4).
a(n) = F(n)*(2^n-1) - Sum_{i=1..n-1} F(i)*F(n-i-1)*2^(n-i-1).
G.f.: x/((1 - x - x^2)*(1 - 2*x - 4*x^2)).
E.g.f.: 2*(exp(x)*(sqrt(5)*cosh(sqrt(5)*x) + 7*sinh(sqrt(5)*x)) - exp(x/2)*(sqrt(5)*cosh(sqrt(5)*x/2) + 4*sinh(sqrt(5)*x/2)))/(11*sqrt(5)). - Stefano Spezia, Jun 19 2024
EXAMPLE
For n=5, the terms of A247648 that are in the interval [16, 31] are 21, 23, 27, 29, and 31, so a(5) = 21+23+27+29+31 = 131.
MATHEMATICA
LinearRecurrence[{3, 3, -6, -4}, {1, 3, 12, 39}, 30] (* Paolo Xausa, Jun 19 2024 *)
PROG
(PARI) Vec(x/((1 - x - x^2)*(1 - 2*x - 4*x^2)) + O(x^40)) \\ Michel Marcus, Jun 16 2024
CROSSREFS
Cf. A000045 (Fibonacci numbers), A247648.
Sequence in context: A242587 A330169 A375256 * A290906 A110153 A343360
KEYWORD
nonn,easy
AUTHOR
Iskender Ozturk, Melike Caliskan, Betül Küçükgök, Ecem Yanik, Irem Türker, Rüya Kılıçarslan, Jun 11 2024
STATUS
approved