login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116996
Partial sums of A116966.
2
0, 1, 4, 6, 10, 15, 22, 28, 36, 45, 56, 66, 78, 91, 106, 120, 136, 153, 172, 190, 210, 231, 254, 276, 300, 325, 352, 378, 406, 435, 466, 496, 528, 561, 596, 630, 666, 703, 742, 780, 820, 861, 904, 946, 990, 1035, 1082, 1128, 1176, 1225
OFFSET
0,3
FORMULA
a(n) = SUM[i=1..n] A116966(n). a(n) = SUM[i=1..n] (n + {1,2,0,1} according as n == {0,1,2,3} mod 4). a(n) = A000217(n) = n*(n+1)/2 unless n == 2 mod 4 in which case a(n) = A000217(n)+1 = (n*(n+1)/2)+1.
G.f.: -x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Apr 30 2013
EXAMPLE
a(1) = 1 = A000217(1).
a(2) = 1+3 = 4 = A000217(2)+1.
a(3) = 1+3+2 = 6 = A000217(3).
a(4) = 1+3+2+4 = 10 = A000217(4).
a(5) = 1+3+2+4+5 = 15 = A000217(5).
a(6) = 1+3+2+4+5+7 = 22 = A000217(6)+1.
a(27) = 1+3+2+4+5+7+6+8+9+11+10+12+13+15+14+16+17+19+18+20+21+23+22+24+25+27+26 = 378 = A000217(27).
MATHEMATICA
Series[(1+2*x-x^2+2*x^3)/(1-x-x^4+x^5), {x, 0, 48}] // CoefficientList[#, x]& // Accumulate // Prepend[#, 0]& (* Jean-François Alcover, Apr 30 2013 *)
PROG
(PARI) concat([0], Vec(-x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1))+O(x^66))) \\ Joerg Arndt, Apr 30 2013
CROSSREFS
Sequence in context: A310586 A121214 A219047 * A004399 A247558 A373630
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 02 2006
EXTENSIONS
More terms from Colin Barker, Apr 30 2013
STATUS
approved