login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A116966.
2

%I #15 Feb 25 2016 11:38:05

%S 0,1,4,6,10,15,22,28,36,45,56,66,78,91,106,120,136,153,172,190,210,

%T 231,254,276,300,325,352,378,406,435,466,496,528,561,596,630,666,703,

%U 742,780,820,861,904,946,990,1035,1082,1128,1176,1225

%N Partial sums of A116966.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).

%F a(n) = SUM[i=1..n] A116966(n). a(n) = SUM[i=1..n] (n + {1,2,0,1} according as n == {0,1,2,3} mod 4). a(n) = A000217(n) = n*(n+1)/2 unless n == 2 mod 4 in which case a(n) = A000217(n)+1 = (n*(n+1)/2)+1.

%F G.f.: -x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1)). - _Colin Barker_, Apr 30 2013

%e a(1) = 1 = A000217(1).

%e a(2) = 1+3 = 4 = A000217(2)+1.

%e a(3) = 1+3+2 = 6 = A000217(3).

%e a(4) = 1+3+2+4 = 10 = A000217(4).

%e a(5) = 1+3+2+4+5 = 15 = A000217(5).

%e a(6) = 1+3+2+4+5+7 = 22 = A000217(6)+1.

%e a(27) = 1+3+2+4+5+7+6+8+9+11+10+12+13+15+14+16+17+19+18+20+21+23+22+24+25+27+26 = 378 = A000217(27).

%t Series[(1+2*x-x^2+2*x^3)/(1-x-x^4+x^5), {x, 0, 48}] // CoefficientList[#, x]& // Accumulate // Prepend[#, 0]& (* _Jean-François Alcover_, Apr 30 2013 *)

%o (PARI) concat([0],Vec(-x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1))+O(x^66))) \\ _Joerg Arndt_, Apr 30 2013

%Y Cf. A000217, A116966.

%K easy,nonn

%O 0,3

%A _Jonathan Vos Post_, Apr 02 2006

%E More terms from _Colin Barker_, Apr 30 2013