login
A116966
a(n) = n + {1,2,0,1} according as n == {0,1,2,3} mod 4.
12
1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14, 16, 17, 19, 18, 20, 21, 23, 22, 24, 25, 27, 26, 28, 29, 31, 30, 32, 33, 35, 34, 36, 37, 39, 38, 40, 41, 43, 42, 44, 45, 47, 46, 48, 49, 51, 50, 52, 53, 55, 54, 56, 57, 59, 58, 60, 61, 63, 62, 64, 65, 67, 66, 68
OFFSET
0,2
COMMENTS
In each group of four consecutive numbers, swap 2nd and 3rd terms. - Zak Seidov, Mar 31 2006
First differences of A089781. - Reinhard Zumkeller, Aug 15 2015
From Guenther Schrack, May 31 2017: (Start)
Permutation of the positive integers partitioned into quadruples [4k+1,4k+3,4k+2,4k+4].
Partial sums: A116996. (End)
FORMULA
a(n) = n+1+(i^(n(n-1))-(-1)^n)/2, where i=sqrt(-1). - Bruno Berselli, Nov 25 2012
G.f.: (2*x^3-x^2+2*x+1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Apr 30 2013
a(n) = A140081(n+2) + n. - Reinhard Zumkeller, Aug 15 2015
From Guenther Schrack, May 31 2017: (Start)
a(n) = n + 1 + ((-1)^(n*(n-1)/2) - (-1)^n)/2.
a(n) = a(n-4) + 4, n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5), n > 4. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/4 + log(2)/2. - Amiram Eldar, Jan 31 2023
MAPLE
f:=proc(i) if i mod 4 = 0 then i+1 elif i mod 4 = 1 then i+2 elif i mod 4 = 2 then i else i+1; fi; end;
MATHEMATICA
b := {1, 2, 0, 1}; a[n_] := n + b[[1 + Mod[n, 4]]]; Table[a[n], {n, 0, 60}] (* Stefan Steinerberger, Mar 31 2006 *)
CoefficientList[Series[(2 x^3 - x^2 + 2 x + 1) / ((x - 1)^2 (x + 1) (x^2 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
PROG
(Maxima) makelist(n+1+(%i^(n*(n-1))-(-1)^n)/2, n, 0, 70); \\ Bruno Berselli, Nov 25 2012
(Magma) /* By definition: */ [ n + [1, 2, 0, 1][1+(n mod 4)]: n in [0..70] ]; // Bruno Berselli, Nov 25 2012
(PARI) Vec((2*x^3-x^2+2*x+1) / ((x-1)^2*(x+1)*(x^2+1)) + O(x^66) ) \\ Joerg Arndt, Apr 30 2013
(Haskell)
a116966 n = a116966_list !! n
a116966_list = zipWith (+) [0..] $ drop 2 a140081_list
-- Reinhard Zumkeller, Aug 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 31 2006
STATUS
approved