login
A116969
If n mod 2 = 0 then 3*2^(n-1)+n-1 else 3*2^(n-1)+n.
0
4, 7, 15, 27, 53, 101, 199, 391, 777, 1545, 3083, 6155, 12301, 24589, 49167, 98319, 196625, 393233, 786451, 1572883, 3145749, 6291477, 12582935, 25165847, 50331673, 100663321, 201326619, 402653211, 805306397, 1610612765, 3221225503, 6442450975, 12884901921
OFFSET
1,1
COMMENTS
Number of moves to solve Easy Pagoda puzzle.
REFERENCES
Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.
FORMULA
a(n) = 3*a(n-1)-a(n-2)-3*a(n-3)+2*a(n-4). G.f.: -x*(x^3-2*x^2-5*x+4) / ((x-1)^2*(x+1)*(2*x-1)). - Colin Barker, Jul 18 2013
MAPLE
f:=n-> if n mod 2 = 0 then 3*2^(n-1)+n-1 else 3*2^(n-1)+n; fi;
MATHEMATICA
f[n_]:=If[EvenQ[n], 3*2^(n-1)+n-1, 3*2^(n-1)+n]; f/@Range[40] (* Harvey P. Dale, Sep 21 2012 *)
CROSSREFS
Sequence in context: A295728 A027419 A301204 * A131090 A178615 A131935
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 01 2006
EXTENSIONS
More terms from Colin Barker, Jul 18 2013
STATUS
approved