The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116969 If n mod 2 = 0 then 3*2^(n-1)+n-1 else 3*2^(n-1)+n. 0
 4, 7, 15, 27, 53, 101, 199, 391, 777, 1545, 3083, 6155, 12301, 24589, 49167, 98319, 196625, 393233, 786451, 1572883, 3145749, 6291477, 12582935, 25165847, 50331673, 100663321, 201326619, 402653211, 805306397, 1610612765, 3221225503, 6442450975, 12884901921 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of moves to solve Easy Pagoda puzzle. REFERENCES Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991. Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2). FORMULA a(n) = 3*a(n-1)-a(n-2)-3*a(n-3)+2*a(n-4). G.f.: -x*(x^3-2*x^2-5*x+4) / ((x-1)^2*(x+1)*(2*x-1)). - Colin Barker, Jul 18 2013 MAPLE f:=n-> if n mod 2 = 0 then 3*2^(n-1)+n-1 else 3*2^(n-1)+n; fi; MATHEMATICA f[n_]:=If[EvenQ[n], 3*2^(n-1)+n-1, 3*2^(n-1)+n]; f/@Range[40] (* Harvey P. Dale, Sep 21 2012 *) CROSSREFS Sequence in context: A295728 A027419 A301204 * A131090 A178615 A131935 Adjacent sequences:  A116966 A116967 A116968 * A116970 A116971 A116972 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Apr 01 2006 EXTENSIONS More terms from Colin Barker, Jul 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 01:29 EDT 2021. Contains 345016 sequences. (Running on oeis4.)