login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116998
Numbers having no fewer distinct prime factors than any predecessor; a(1) = 1.
5
1, 2, 3, 4, 5, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 330, 390, 420, 462, 510, 546, 570, 630, 660
OFFSET
1,2
COMMENTS
A001221(a(n)) <= A001221(a(n+1));
A002110 is a subsequence.
The unitary version of Ramanujan's largely composite numbers (A067128), numbers having no fewer unitary divisors than any predecessor. - Amiram Eldar, Jun 08 2019
Called omega-largely composite numbers by Erdős and Nicolas (1981). - Amiram Eldar, Jun 24 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2500 from Alois P. Heinz)
Paul Erdős and Jean-Louis Nicolas, Sur la fonction: nombre de facteurs premiers de n, L'Enseignement Math., Vol. 27 (1981), pp. 3-27; alternative link.
MAPLE
a:= proc(n) option remember; local k, t;
t:= nops(ifactors(a(n-1))[2]);
for k from 1+a(n-1) while nops(ifactors(k)[2])<t do od; k
end: a(1):=1:
seq(a(n), n=1..80); # Alois P. Heinz, Oct 05 2012
MATHEMATICA
a[1] = 1; a[n_] := a[n] = For[nu = PrimeNu[a[n-1]]; k = a[n-1]+1, True, k++, If[PrimeNu[k] >= nu, Return[k]]]; Array[a, 80] (* Jean-François Alcover, Apr 11 2017 *)
CROSSREFS
Cf. A001221 (omega), A002110 (primorial numbers).
Sequence in context: A210184 A015853 A018642 * A337211 A333987 A342476
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Apr 03 2006
STATUS
approved