login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers having no fewer distinct prime factors than any predecessor; a(1) = 1.
5

%I #47 Nov 14 2024 14:05:17

%S 1,2,3,4,5,6,10,12,14,15,18,20,21,22,24,26,28,30,42,60,66,70,78,84,90,

%T 102,105,110,114,120,126,130,132,138,140,150,154,156,165,168,170,174,

%U 180,182,186,190,195,198,204,210,330,390,420,462,510,546,570,630,660

%N Numbers having no fewer distinct prime factors than any predecessor; a(1) = 1.

%C A001221(a(n)) <= A001221(a(n+1));

%C A002110 is a subsequence.

%C The unitary version of Ramanujan's largely composite numbers (A067128), numbers having no fewer unitary divisors than any predecessor. - _Amiram Eldar_, Jun 08 2019

%C Called omega-largely composite numbers by Erdős and Nicolas (1981). - _Amiram Eldar_, Jun 24 2023

%H Amiram Eldar, <a href="/A116998/b116998.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..2500 from Alois P. Heinz)

%H Paul Erdős and Jean-Louis Nicolas, <a href="https://static.renyi.hu/~p_erdos/1981-34.pdf">Sur la fonction: nombre de facteurs premiers de n</a>, L'Enseignement Math., Vol. 27 (1981), pp. 3-27; <a href="http://math.univ-lyon1.fr/~nicolas/ensmathErdos81.pdf">alternative link</a>.

%p a:= proc(n) option remember; local k, t;

%p t:= nops(ifactors(a(n-1))[2]);

%p for k from 1+a(n-1) while nops(ifactors(k)[2])<t do od; k

%p end: a(1):=1:

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Oct 05 2012

%t a[1] = 1; a[n_] := a[n] = For[nu = PrimeNu[a[n-1]]; k = a[n-1]+1, True, k++, If[PrimeNu[k] >= nu, Return[k]]]; Array[a, 80] (* _Jean-François Alcover_, Apr 11 2017 *)

%Y Cf. A029744, A067128.

%Y Cf. A001221 (omega), A002110 (primorial numbers).

%K nonn,look

%O 1,2

%A _Reinhard Zumkeller_, Apr 03 2006