login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116994
Prime partial sums of triangular numbers with prime indices.
2
3, 1759, 3323, 469303, 605113, 641969, 1110587, 1426669, 11148289, 18352349, 20473721, 21820391, 24710753, 30048589, 36690923, 40785301, 97060681, 155135369, 160593239, 168132247, 361391623, 377965069, 416572171, 645803201
OFFSET
1,1
LINKS
FORMULA
A000040 INTERSECTION {A085739 Partial sums of A034953(n)}. Primes in A085739. (Sum_{i=1..k} A000217(A000040(i))) iff in A000040. (Sum_{i=1..k} (A000040(i)*(A000040(i)+1)/2) iff in A000040.
EXAMPLE
a(1) = Sum_{i=1..1} prime(i)*(prime(i)+1)/2 = T(2) = 3.
a(2) = Sum_{i=1..11} prime(i)*(prime(i)+1)/2 = T(2)+T(3)+T(5)+T(7)+T(11)+T(13)+T(17)+T(19)+T(23)+T(29)+T(31) = 1759.
a(3) = Sum_{i=1..13} prime(i)*(prime(i)+1)/2 = 3323.
a(4) = Sum_{i=1..53} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(241) = 469303.
a(5) = Sum_{i=1..57} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(269) = 605113.
a(6) = Sum_{i=1..58} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(271) = 641969.
a(7) = Sum_{i=1..68} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(337) = 1110587.
MAPLE
T:=n->n*(n+1)/2: a:=proc(n): if isprime(sum(T(ithprime(j)), j=1..n))=true then sum(T(ithprime(j)), j=1..n) else fi end: seq(a(n), n=1..500); # Emeric Deutsch, Apr 06 2006
MATHEMATICA
Select[Accumulate[Table[(n(n+1))/2, {n, Prime[Range[500]]}]], PrimeQ] (* Harvey P. Dale, Jan 25 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 02 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 06 2006
STATUS
approved