Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 02 2019 20:28:29
%S 3,1759,3323,469303,605113,641969,1110587,1426669,11148289,18352349,
%T 20473721,21820391,24710753,30048589,36690923,40785301,97060681,
%U 155135369,160593239,168132247,361391623,377965069,416572171,645803201
%N Prime partial sums of triangular numbers with prime indices.
%H Harvey P. Dale, <a href="/A116994/b116994.txt">Table of n, a(n) for n = 1..2000</a>
%F A000040 INTERSECTION {A085739 Partial sums of A034953(n)}. Primes in A085739. (Sum_{i=1..k} A000217(A000040(i))) iff in A000040. (Sum_{i=1..k} (A000040(i)*(A000040(i)+1)/2) iff in A000040.
%e a(1) = Sum_{i=1..1} prime(i)*(prime(i)+1)/2 = T(2) = 3.
%e a(2) = Sum_{i=1..11} prime(i)*(prime(i)+1)/2 = T(2)+T(3)+T(5)+T(7)+T(11)+T(13)+T(17)+T(19)+T(23)+T(29)+T(31) = 1759.
%e a(3) = Sum_{i=1..13} prime(i)*(prime(i)+1)/2 = 3323.
%e a(4) = Sum_{i=1..53} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(241) = 469303.
%e a(5) = Sum_{i=1..57} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(269) = 605113.
%e a(6) = Sum_{i=1..58} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(271) = 641969.
%e a(7) = Sum_{i=1..68} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(337) = 1110587.
%p T:=n->n*(n+1)/2: a:=proc(n): if isprime(sum(T(ithprime(j)),j=1..n))=true then sum(T(ithprime(j)),j=1..n) else fi end: seq(a(n),n=1..500); # _Emeric Deutsch_, Apr 06 2006
%t Select[Accumulate[Table[(n(n+1))/2,{n,Prime[Range[500]]}]],PrimeQ] (* _Harvey P. Dale_, Jan 25 2015 *)
%Y Cf. A000040, A000217, A034953, A085739.
%K easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Apr 02 2006
%E More terms from _Emeric Deutsch_, Apr 06 2006