The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339112 Products of primes of semiprime index (A106349). 14
 1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A semiprime (A001358) is a product of any two prime numbers. Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. LINKS Table of n, a(n) for n=1..55. EXAMPLE The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15): 1: 149: (34) 313: (36) 7: (11) 161: (11)(22) 329: (11)(23) 13: (12) 163: (18) 343: (11)(11)(11) 23: (22) 167: (26) 347: (29) 29: (13) 169: (12)(12) 373: (1C) 43: (14) 199: (19) 377: (12)(13) 47: (23) 203: (11)(13) 389: (45) 49: (11)(11) 227: (44) 421: (1D) 73: (24) 233: (27) 439: (37) 79: (15) 257: (35) 443: (1E) 91: (11)(12) 269: (28) 449: (2A) 97: (33) 271: (1A) 467: (46) 101: (16) 293: (1B) 487: (2B) 137: (25) 299: (12)(22) 491: (1F) 139: (17) 301: (11)(14) 499: (38) MATHEMATICA semiQ[n_]:=PrimeOmega[n]==2; Select[Range[100], FreeQ[If[#==1, {}, FactorInteger[#]], {p_, k_}/; !semiQ[PrimePi[p]]]&] CROSSREFS These primes (of semiprime index) are listed by A106349. The strict (squarefree) case is A340020. The prime instead of semiprime version: primes: A006450 products: A076610 strict: A302590 The nonprime instead of semiprime version: primes: A007821 products: A320628 odd: A320629 strict: A340104 odd strict: A340105 The squarefree semiprime instead of semiprime version: strict: A309356 primes: A322551 products: A339113 A001358 lists semiprimes, with odd and even terms A046315 and A100484. A006881 lists squarefree semiprimes. A037143 lists primes and semiprimes (and 1). A056239 gives the sum of prime indices, which are listed by A112798. A084126 and A084127 give the prime factors of semiprimes. A101048 counts partitions into semiprimes. A302242 is the weight of the multiset of multisets with MM-number n. A305079 is the number of connected components for MM-number n. A320892 lists even-omega non-products of distinct semiprimes. A320911 lists products of squarefree semiprimes (Heinz numbers of A338914). A320912 lists products of distinct semiprimes (Heinz numbers of A338916). A338898, A338912, and A338913 give the prime indices of semiprimes. MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs). Cf. A000040, A000720, A001055, A001222, A003963, A005117, A007097, A289509, A320461. Sequence in context: A273641 A214794 A043104 * A340020 A106349 A293657 Adjacent sequences: A339109 A339110 A339111 * A339113 A339114 A339115 KEYWORD nonn AUTHOR Gus Wiseman, Mar 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 07:07 EDT 2024. Contains 375146 sequences. (Running on oeis4.)