login
A302478
Products of prime numbers of squarefree index.
33
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 93, 94
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
LINKS
EXAMPLE
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
25: {{2},{2}}
26: {{},{1,2}}
27: {{1},{1},{1}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
MATHEMATICA
Select[Range[100], Or[#===1, And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All, 1]]]&]
PROG
(PARI) ok(n)={!#select(p->!issquarefree(primepi(p)), factor(n)[, 1])} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2018
STATUS
approved