login
A151983
Numbers congruent to {0, 1} mod 32.
4
0, 1, 32, 33, 64, 65, 96, 97, 128, 129, 160, 161, 192, 193, 224, 225, 256, 257, 288, 289, 320, 321, 352, 353, 384, 385, 416, 417, 448, 449, 480, 481, 512, 513, 544, 545, 576, 577, 608, 609, 640, 641, 672, 673, 704, 705, 736, 737, 768, 769, 800, 801, 832, 833, 864, 865
OFFSET
1,3
COMMENTS
Numbers n such that n^2 - n is divisible by 32.
FORMULA
From Bruno Berselli, Jan 26 2011: (Start)
G.f.: (1+31*x)*x^2/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
a(n) = (32*n - 15*(-1)^n - 47)/2.
Sum_{k=1..n} a(k) == 0 (mod A004526(n)) for n > 1. (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(k)=2^(k+4) for k > 0. - Philippe Deléham, Oct 16 2011
E.g.f.: 31 + ((32*x - 47)*exp(x) - 15*exp(-x))/2. - David Lovler, Sep 10 2022
MATHEMATICA
Flatten[{#, #+1}&/@(32Range[0, 35])] (* Harvey P. Dale, Mar 11 2011 *)
CoefficientList[Series[(1 + 31 x) x / ((1 + x) (1 - x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
PROG
(PARI) a(n)=(32*n-15*(-1)^n-47)/2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 23 2009
STATUS
approved