login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to {0, 1} mod 32.
4

%I #49 Sep 10 2022 07:33:18

%S 0,1,32,33,64,65,96,97,128,129,160,161,192,193,224,225,256,257,288,

%T 289,320,321,352,353,384,385,416,417,448,449,480,481,512,513,544,545,

%U 576,577,608,609,640,641,672,673,704,705,736,737,768,769,800,801,832,833,864,865

%N Numbers congruent to {0, 1} mod 32.

%C Numbers n such that n^2 - n is divisible by 32.

%H Vincenzo Librandi, <a href="/A151983/b151983.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F From _Bruno Berselli_, Jan 26 2011: (Start)

%F G.f.: (1+31*x)*x^2/((1+x)*(1-x)^2).

%F a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.

%F a(n) = (32*n - 15*(-1)^n - 47)/2.

%F Sum_{k=1..n} a(k) == 0 (mod A004526(n)) for n > 1. (End)

%F a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(k)=2^(k+4) for k > 0. - _Philippe Deléham_, Oct 16 2011

%F E.g.f.: 31 + ((32*x - 47)*exp(x) - 15*exp(-x))/2. - _David Lovler_, Sep 10 2022

%t Flatten[{#,#+1}&/@(32Range[0,35])] (* _Harvey P. Dale_, Mar 11 2011 *)

%t CoefficientList[Series[(1 + 31 x) x / ((1 + x) (1 - x)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 19 2013 *)

%o (PARI) a(n)=(32*n-15*(-1)^n-47)/2 \\ _Charles R Greathouse IV_, Oct 16 2015

%Y Cf. A004526, A030308, A070454.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, Aug 23 2009