login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323334
Sum of distinct products i*j*k with 1 <= i, j, k <= n.
2
1, 15, 90, 310, 990, 2220, 5300, 9660, 17130, 28670, 52848, 75696, 128541, 183393, 257628, 344316, 529038, 683316, 1001110, 1256010, 1607004, 2049490, 2837700, 3330636, 4177186, 5150340, 6273810, 7432702, 9779991, 11124711, 14381168, 16610640, 19542393, 23032799, 26873769
OFFSET
1,2
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..2302 (terms 1..500 from Seiichi Manyama)
EXAMPLE
a(2) = 1 + 2 + 4 + 8 = 15.
a(3) = 1 + 2 + 3 + 4 + 6 + 8 + 9 + 12 + 18 + 27 = 90.
MATHEMATICA
a[n_] := Table[i j k, {i, n}, {j, n}, {k, n}] // Flatten // Union // Total;
Array[a, 35] (* Jean-François Alcover, Nov 25 2020 *)
PROG
(Python)
def aupton(terms):
alst, s, pset = [], 0, set()
for n in range(1, terms):
for i in range(1, n+1):
for j in range(i, n+1):
p = i*j*n # k = n
if p not in pset:
pset.add(p)
s += p
alst.append(s)
return alst
print(aupton(36)) # Michael S. Branicky, Jan 15 2021
CROSSREFS
Column 3 of A321163.
Cf. A027425.
Sequence in context: A010822 A316224 A022707 * A151974 A179096 A328994
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 11 2019
STATUS
approved