Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 08 2022 22:13:50
%S 1,242,1463,4464,10045,19006,32147,50268,74169,104650,142511,188552,
%T 243573,308374,383755,470516,569457,681378,807079,947360,1103021,
%U 1274862,1463683,1670284,1895465,2140026,2404767,2690488,2997989,3328070,3681531,4059172,4461793
%N Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25.
%C a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n.
%H Andrew Howroyd, <a href="/A160551/b160551.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
%F a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
%F From _Alois P. Heinz_, Oct 08 2022: (Start)
%F a(n) = A001299(100*n).
%F G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)
%e There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
%p f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f,x,100*n+1),polynom)-convert(series(f,x,100*n),polynom)) /x^(100*n);
%p a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
%o (PARI) a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ _Andrew Howroyd_, Feb 02 2020
%Y Cf. A001299.
%K nonn,easy
%O 0,2
%A _Lee A. Newberg_, May 18 2009, Jun 15 2009
%E Terms a(21) and beyond from _Andrew Howroyd_, Feb 02 2020