login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005327
Certain subgraphs of a directed graph (inverse binomial transform of A005321).
(Formerly M4289)
7
1, 0, 1, 6, 91, 2820, 177661, 22562946, 5753551231, 2940064679040, 3007686166657921, 6156733583148764286, 25211824022994189751171, 206510050572345408251841660, 3383254158526734823389921915781
OFFSET
1,4
COMMENTS
q-Subfactorial for q=2. - Vladimir Reshetnikov, Sep 12 2016
REFERENCES
T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
T. L. Greenough and T. Lockman, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976. [Annotated scanned copy]
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Subfactorial, q-Factorial, q-Analog.
FORMULA
For n>1, a(n) = (2^(n-1)-1)*a(n-1) + (-1)^(n-1). - Max Alekseyev, Feb 23 2012
a(n) = p(n-1)*sum((-1)^j/p(j), j=0..n-1), where p(0) = 1, p(k) = product(2^i-1, i=1..k) for k>0. - Emeric Deutsch, Jan 23 2005
a(n) ~ A048651^2 * 2^(n*(n-1)/2). - Vaclav Kotesovec, Oct 09 2019
MAPLE
p:=proc(n) if n=0 then 1 else product(2^i-1, i=1..n) fi end: a:=n->p(n-1)*sum((-1)^j/p(j), j=0..n-1): seq(a(n), n=1..17); # Emeric Deutsch, Jan 23 2005
MATHEMATICA
a[1] = 1; a[n_] := a[n] = (2^(n-1)-1)*a[n-1] + (-1)^(n-1); Array[a, 15] (* Jean-François Alcover, Apr 05 2016, after Max Alekseyev *)
With[{q = 2}, Table[QFactorial[n, q] Sum[(-1)^k/QFactorial[k, q], {k, 0, n}], {n, 0, 20}]] (* Vladimir Reshetnikov, Sep 12 2016 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Apr 27 2010
STATUS
approved