login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349716
E.g.f. satisfies: A(x) = exp( x * (1 + A(x)^5)/2 ).
7
1, 1, 6, 91, 2156, 69926, 2884576, 144555356, 8529135216, 579220982056, 44503081624976, 3816776859516776, 361462121953291456, 37464997600663289216, 4218485281787859411456, 512762346462142021355776, 66919363061333997572830976, 9332997074366800051673277056
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = (1/2^n) * Sum_{k=0..n} (5*k+1)^(n-1) * binomial(n,k).
E.g.f.: ( -LambertW( -5*x/2 * exp(5*x/2) )/(5*x/2) )^(1/5).
G.f.: 2 * Sum_{k>=0} (5*k+1)^(k-1) * x^k/(2 - (5*k+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 5^(n-1) * n^(n-1) / (LambertW(exp(-1))^(n + 1/5) * 2^n * exp(n)). - Vaclav Kotesovec, Nov 26 2021
MATHEMATICA
a[n_] := (1/2^n) * Sum[(5*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (5*k+1)^(n-1)*binomial(n, k))/2^n;
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-5*x/2*exp(5*x/2))/(5*x/2))^(1/5)))
(PARI) my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (5*k+1)^(k-1)*x^k/(2-(5*k+1)*x)^(k+1)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 26 2021
STATUS
approved