The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349721 E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x)^3)/2 ). 6
 1, 1, -2, 19, -260, 4966, -121328, 3613996, -127035920, 5147600680, -236245559984, 12112405259560, -686148484748480, 42560312499982720, -2868921992458611200, 208828244778853125376, -16324500711130356582656, 1363986660232205656646272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..352 Eric Weisstein's World of Mathematics, Lambert W-Function. FORMULA a(n) = (1/2^n) * Sum_{k=0..n} (-3*k+1)^(n-1) * binomial(n,k). E.g.f.: ( (3*x/2)/LambertW( 3*x/2 * exp(-3*x/2) ) )^(1/3). G.f.: 2 * Sum_{k>=0} (-3*k+1)^(k-1) * x^k/(2 - (-3*k+1)*x)^(k+1). a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * 3^(n-1) * n^(n-1) / (2^n * exp(n) * LambertW(exp(-1))^(n - 1/3)). - Vaclav Kotesovec, Dec 05 2021 MATHEMATICA a[n_] := (1/2^n) * Sum[(-3*k + 1)^(n - 1) * Binomial[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *) PROG (PARI) a(n) = sum(k=0, n, (-3*k+1)^(n-1)*binomial(n, k))/2^n; (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(((3*x/2)/lambertw(3*x/2*exp(-3*x/2)))^(1/3))) (PARI) my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (-3*k+1)^(k-1)*x^k/(2-(-3*k+1)*x)^(k+1))) CROSSREFS Cf. A007889, A202617, A349714, A349715, A349716, A349719, A349720. Sequence in context: A234505 A239108 A191806 * A252710 A065923 A293946 Adjacent sequences: A349718 A349719 A349720 * A349722 A349723 A349724 KEYWORD sign AUTHOR Seiichi Manyama, Nov 27 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 20:28 EDT 2024. Contains 374377 sequences. (Running on oeis4.)