login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182263 G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x)^2. 2
1, 1, 6, 91, 2910, 187178, 24019884, 6154080275, 3151538898870, 3227331249742334, 6609648919647088788, 27073195436180090799006, 221783764770326660974008300, 3633705802215756626623500731892, 119069276624759801067298501607804376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..70

FORMULA

a(n) = (2^n-1) * { [x^(n-1)] A(x)^2 } for n>0 with a(0)=1.

a(n) = (2^n-1) * Sum_{k=0..n-1} a(k)*a(n-k-1) for n>0 with a(0)=1.

a(n) ~ c * 2^((n-1)*(n+4)/2), where c = 0.71662215139236633556752111264619992099204134882... - Vaclav Kotesovec, Feb 22 2014

EXAMPLE

G.f.: A(x) = 1 + x + 6*x^2 + 91*x^3 + 2910*x^4 + 187178*x^5 + 24019884*x^6 +...

Related expansions:

A(x)^2 = 1 + 2*x + 13*x^2 + 194*x^3 + 6038*x^4 + 381268*x^5 + 48457325*x^6 + 12358976074*x^7 + 6315716731394*x^8 + 6461044887240556*x^9 +...

such that a(n) = (2^n-1) times the coefficient of x^(n-1) in A(x)^2:

a(2) = 3 * 2 = 6;

a(3) = 7 * 13 = 91;

a(4) = 15 * 194 = 2910;

a(5) = 31 * 6038 = 187178;

a(6) = 63 * 381268 = 24019884; ...

MATHEMATICA

a = ConstantArray[0, 21]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = (2^n-1)* Sum[a[[k+1]]*a[[n-k]], {k, 0, n-1}], {n, 2, 20}]; a  (* Vaclav Kotesovec, Feb 22 2014 *)

PROG

(PARI) /* Generating Function Satisfies: */

{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} /* = n-th derivative of F */

{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(k=1, n, x^k/k!*Dx(k, x*A^2+x*O(x^n) ))); polcoeff(A, n)}

(PARI) /* Recurrence: */

{a(n)=if(n==0, 1, (2^n-1)*sum(k=0, n-1, a(k)*a(n-k-1)))}

for(n=0, 15, print1(a(n), ", "))

(PARI) /* Recurrence: */

{a(n)=local(A=1+sum(k=1, n-1, a(k)*x^k)+x*O(x^n)); if(n==0, 1, (2^n-1)*polcoeff(A^2, n-1))}

CROSSREFS

Cf. A005329, A182264.

Sequence in context: A219220 A006151 A005327 * A171910 A278683 A280214

Adjacent sequences:  A182260 A182261 A182262 * A182264 A182265 A182266

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 14:50 EST 2018. Contains 317208 sequences. (Running on oeis4.)