login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1)* sum_{m=0..infinity} [(3*m+1)^n + (3*m+2)^n]*x^m in row n, column k.
3

%I #6 Jul 23 2012 09:05:32

%S 2,3,3,5,26,5,9,153,153,9,17,796,2262,796,17,33,3951,25176,25176,3951,

%T 33,65,19266,243111,524876,243111,19266,65,129,93477,2168235,8760639,

%U 8760639,2168235,93477,129,257,453848,18445820,127880936,235517318

%N Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1)* sum_{m=0..infinity} [(3*m+1)^n + (3*m+2)^n]*x^m in row n, column k.

%C Row sums are 2, 6, 36, 324, 3888, 58320, 1049760, 22044960, 529079040, 14285134080,

%C 428554022400,...

%e 2;

%e 3, 3;

%e 5, 26, 5;

%e 9, 153, 153, 9;

%e 17, 796, 2262, 796, 17;

%e 33, 3951, 25176, 25176, 3951, 33;

%e 65, 19266, 243111, 524876, 243111, 19266, 65;

%e 129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129;

%e 257, 453848, 18445820, 127880936, 235517318, 127880936, 18445820, 453848, 257;

%p A154646 := proc(n,k)

%p (-1)^(n+1)*(x-1)^(n+1)*add(x^j*((3*j+1)^n+(3*j+2)^n),j=0..k) ;

%p coeftayl(%,x=0,k) ;

%p end proc: # _R. J. Mathar_, Jul 23 2012

%t Clear[p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 2)^n*x^m, {m, 0, Infinity}]

%t + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 1)^n*x^m, {m, 0, Infinity}];

%t Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];

%t Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];

%t Flatten[%]

%t Contribution from _Roger L. Bagula_, Nov 27 2009: (Start)

%t p[t_] = Exp[t]*x/((-Exp[3*t] + x)) + Exp[2*t]*x/((-Exp[3*t] + x));

%t a = Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];

%t Flatten[a] (End)

%K nonn,tabl,easy

%O 0,1

%A _Roger L. Bagula_, Jan 13 2009