login
A040019
Continued fraction for sqrt(24).
5
4, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 8, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 7/2^s). (End)
EXAMPLE
4.898979485566356196394568149... = 4 + 1/(1 + 1/(8 + 1/(1 + 1/(8 + ...)))). - Harry J. Smith, Jun 03 2009
MAPLE
Digits := 100: convert(evalf(sqrt(N)), confrac, 90, 'cvgts'):
MATHEMATICA
ContinuedFraction[Sqrt[24], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
PadRight[{4}, 120, {8, 1}] (* Harvey P. Dale, Oct 24 2022 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(24)); for (n=0, 20000, write("b040019.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009
CROSSREFS
Cf. A010480 (decimal expansion).
Sequence in context: A085994 A179836 A334451 * A240776 A019768 A319296
KEYWORD
nonn,cofr,easy,mult
STATUS
approved