login
A334451
Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^5).
6
1, 0, 0, 4, 1, 8, 1, 8, 1, 6, 7, 7, 0, 8, 5, 6, 6, 9, 0, 3, 8, 8, 7, 2, 6, 9, 7, 6, 5, 6, 5, 8, 5, 6, 9, 6, 0, 6, 3, 1, 5, 8, 1, 9, 5, 0, 6, 3, 6, 7, 4, 3, 2, 8, 8, 2, 8, 3, 4, 2, 4, 9, 7, 6, 8, 6, 9, 7, 7, 9, 4, 4, 9, 6, 4, 3, 9, 9, 3, 8, 0, 8, 1, 9, 9, 2, 1, 4, 5, 9, 3, 8, 0, 5, 7, 9, 0, 0, 6, 2, 3, 4, 5, 2, 5
OFFSET
1,4
COMMENTS
In general, for s>0, Product_{k>=1} (1 + 1/A002145(k)^(2*s+1))/(1 - 1/A002145(k)^(2*s+1)) = (2*s)! * (2^(2*s + 2) - 2) * zeta(2*s+1) / (Pi^(2*s+1) * A000364(s)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002145(k)^s)/(1 - 1/A002145(k)^s) = 2^s * (2^s - 1) * zeta(s) / (zeta(s, 1/4) - zeta(s, 3/4)).
REFERENCES
B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.
LINKS
FORMULA
A334451 / A334452 = 1488*zeta(5)/(5*Pi^5).
A334449 * A334451 = 90720*zeta(5)/Pi^10.
EXAMPLE
1.0041818167708566903887269765658569606315819506367432882834249768697794496439...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 30 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved