The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334452 Decimal expansion of Product_{k>=1} (1 - 1/A002145(k)^5). 6
 9, 9, 5, 8, 1, 8, 7, 2, 9, 8, 6, 8, 0, 8, 0, 5, 9, 5, 9, 4, 3, 3, 8, 5, 1, 6, 1, 6, 4, 3, 1, 6, 5, 9, 7, 1, 8, 7, 4, 3, 4, 7, 2, 7, 3, 1, 8, 4, 9, 1, 0, 5, 6, 6, 3, 9, 8, 3, 5, 7, 7, 1, 4, 6, 9, 8, 0, 3, 9, 6, 3, 9, 6, 7, 0, 3, 1, 0, 4, 6, 7, 9, 7, 0, 0, 5, 4, 4, 0, 1, 9, 6, 8, 0, 3, 1, 8, 2, 3, 3, 9, 3, 9, 8, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS In general, for s>0, Product_{k>=1} (1 + 1/A002145(k)^(2*s+1))/(1 - 1/A002145(k)^(2*s+1)) = (2*s)! * (2^(2*s + 2) - 2) * zeta(2*s+1) / (Pi^(2*s+1) * A000364(s)). - Dimitris Valianatos, May 01 2020 In general, for s>1, Product_{k>=1} (1 + 1/A002145(k)^s)/(1 - 1/A002145(k)^s) = 2^s * (2^s - 1) * zeta(s) / (zeta(s, 1/4) - zeta(s, 3/4)). REFERENCES B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65. LINKS Ph. Flajolet and I. Vardi, Zeta function expansions of some classical constants, Feb 18 1996, p. 7-8. R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 4 3 5 = 1/A334452). FORMULA A334451 / A334452 = 1488*zeta(5)/(5*Pi^5). A334450 * A334452 = 32/(31*zeta(5)). EXAMPLE 0.99581872986808059594338516164316597187434727318491056639835771469803963967031... CROSSREFS Cf. A002145, A243379, A334427, A334448. Sequence in context: A076416 A201289 A091133 * A195480 A175619 A136130 Adjacent sequences:  A334449 A334450 A334451 * A334453 A334456 A334457 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, Apr 30 2020 EXTENSIONS More digits from Vaclav Kotesovec, Jun 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 15:50 EDT 2020. Contains 336202 sequences. (Running on oeis4.)