login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334449
Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^5).
7
1, 0, 0, 0, 3, 2, 3, 4, 7, 5, 1, 4, 8, 0, 7, 1, 6, 3, 8, 6, 0, 3, 6, 8, 6, 4, 2, 7, 3, 3, 9, 9, 4, 2, 3, 6, 9, 2, 6, 5, 2, 4, 6, 5, 5, 2, 2, 0, 2, 7, 3, 7, 9, 8, 0, 4, 0, 7, 5, 0, 7, 1, 6, 4, 8, 5, 9, 9, 6, 3, 8, 1, 1, 3, 7, 4, 6, 8, 0, 4, 2, 2, 4, 4, 0, 6, 0, 5, 6, 3, 2, 9, 6, 0, 0, 1, 4, 1, 9, 1, 2, 7, 9, 3, 2
OFFSET
1,5
COMMENTS
In general, for s>0, Product_{k>=1} (1 + 1/A002144(k)^(2*s+1))/(1 - 1/A002144(k)^(2*s+1)) = Pi^(2*s+1) * A000364(s) * zeta(2*s+1) / ((2^(2*s+2) + 2) * (2*s)! * zeta(4*s+2)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).
REFERENCES
B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.
LINKS
FORMULA
A334449 / A334450 = 4725*zeta(5)/(16*Pi^5).
A334449 * A334451 = 90720*zeta(5)/Pi^10.
EXAMPLE
1.0003234751480716386036864273399423692652465522027379804075071648599638113746...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 30 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved