login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334448
Decimal expansion of Product_{k>=1} (1 - 1/A002145(k)^4).
8
9, 8, 7, 1, 6, 2, 6, 2, 5, 4, 2, 2, 2, 2, 6, 8, 5, 6, 4, 8, 2, 7, 0, 1, 2, 6, 4, 5, 7, 7, 3, 7, 0, 8, 2, 7, 7, 2, 4, 0, 3, 2, 7, 9, 7, 2, 9, 2, 8, 2, 4, 1, 4, 7, 4, 3, 4, 8, 3, 2, 6, 5, 0, 8, 5, 5, 7, 3, 0, 8, 9, 4, 7, 5, 6, 6, 7, 0, 0, 1, 8, 8, 9, 0, 8, 4, 1, 5, 0, 4, 9, 9, 8, 9, 0, 7, 3, 3, 4, 7, 7, 0, 3, 5, 3, 6
OFFSET
0,1
COMMENTS
In general, for s>1, Product_{k>=1} (1 + 1/A002145(k)^s)/(1 - 1/A002145(k)^s) = 2^s * (2^s - 1) * zeta(s) / (zeta(s, 1/4) - zeta(s, 3/4)).
REFERENCES
B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.
LINKS
Ph. Flajolet and I. Vardi, Zeta function expansions of some classical constants, Feb 18 1996, p. 7-8.
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 4 3 4 = 1/A334448).
FORMULA
A334447 / A334448 = 1/(PolyGamma(3, 1/4)/(8*Pi^4) - 1).
A334446 * A334448 = 96/Pi^4.
EXAMPLE
0.98716262542222685648270126457737082772403279729282414743483...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 30 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved