login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106334
Decimal expansion of the function F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
6
1, 9, 8, 7, 3, 6, 9, 7, 2, 1, 1, 8, 4, 6, 8, 4, 1, 4, 5, 2, 6, 9, 2, 8, 9, 7, 8, 3, 3, 4, 4, 4, 1, 2, 6, 1, 8, 3, 4, 2, 7, 1, 7, 7, 2, 9, 8, 5, 5, 4, 5, 7, 4, 7, 0, 3, 5, 6, 2, 2, 3, 1, 0, 3, 8, 2, 6, 9, 5, 8, 9, 3, 8, 8, 6, 6, 2, 5, 5, 4, 7, 7, 6, 2, 0, 9, 7, 6, 2, 9, 9, 6, 3, 3, 6, 5, 7, 2, 7, 4, 6, 8, 1, 3, 5
OFFSET
1,2
COMMENTS
Constant A106333 divided by this constant equals constant A106335, the radius of convergence of the g.f. of A106336.
EXAMPLE
F(x)=1.9873697211846841452692897833444126183427177298554574703562231
where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ...
at x = 0.6411803884299545796456448886283011... (A106333).
MATHEMATICA
digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); f[x0] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) A106333=solve(x=.6, .7, sum(n=0, 100, (1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0, 100, A106333^(n*(n+1)/2))
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Apr 29 2005
STATUS
approved