The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106334 Decimal expansion of the function F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2). 6
 1, 9, 8, 7, 3, 6, 9, 7, 2, 1, 1, 8, 4, 6, 8, 4, 1, 4, 5, 2, 6, 9, 2, 8, 9, 7, 8, 3, 3, 4, 4, 4, 1, 2, 6, 1, 8, 3, 4, 2, 7, 1, 7, 7, 2, 9, 8, 5, 5, 4, 5, 7, 4, 7, 0, 3, 5, 6, 2, 2, 3, 1, 0, 3, 8, 2, 6, 9, 5, 8, 9, 3, 8, 8, 6, 6, 2, 5, 5, 4, 7, 7, 6, 2, 0, 9, 7, 6, 2, 9, 9, 6, 3, 3, 6, 5, 7, 2, 7, 4, 6, 8, 1, 3, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Constant A106333 divided by this constant equals constant A106335, the radius of convergence of the g.f. of A106336. LINKS Table of n, a(n) for n=1..105. EXAMPLE F(x)=1.9873697211846841452692897833444126183427177298554574703562231 where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ... at x = 0.6411803884299545796456448886283011... (A106333). MATHEMATICA digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); f[x0] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *) PROG (PARI) A106333=solve(x=.6, .7, sum(n=0, 100, (1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0, 100, A106333^(n*(n+1)/2)) CROSSREFS Cf. A106333, A106335, A106332, A106336. Sequence in context: A278828 A334448 A011116 * A089739 A199264 A022965 Adjacent sequences: A106331 A106332 A106333 * A106335 A106336 A106337 KEYWORD cons,nonn AUTHOR Paul D. Hanna, Apr 29 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 21:47 EDT 2024. Contains 372720 sequences. (Running on oeis4.)