login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106337
Number of ways of writing n as the sum of n triangular numbers.
9
1, 1, 1, 4, 13, 31, 82, 253, 757, 2173, 6341, 18888, 56266, 167324, 499773, 1499059, 4503557, 13546893, 40824379, 123233868, 372472353, 1127080252, 3414310032, 10353722919, 31425764410, 95463814056, 290222666436, 882954212908, 2688037654049, 8188468874808
OFFSET
0,4
COMMENTS
Number of compositions of n into n triangular numbers with 0's allowed. a(3) = 4: [1,1,1], [0,0,3], [0,3,0], [3,0,0]. - Alois P. Heinz, Jul 31 2017
The radius of convergence is equal to A106335. - Vaclav Kotesovec, Nov 15 2017
LINKS
FORMULA
Log.g.f.: Sum_{n>=1} a(n)/n*x^n = log(G106336(x)), where G106336(x) is the g.f. of A106336 and satisfies: Sum_{n>=0} (x*G106336(x))^(n*(n+1)/2) = G106336(x).
a(n) = [x^n] Product_{j=1..n} (1+x^j-x^(2*j)-x^(3*j))^n. - Alois P. Heinz, Aug 01 2017
EXAMPLE
G106336(x) = exp(x + 1/2*x^2 + 4/3*x^3 + 13/4*x^4 + 31/5*x^5 +...).
G106336(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 +...+ A106336(n)*x^n +...
G106336(x) = 1 + x*G106336(x) + (x*G106336(x))^3 + (x*G106336(x))^6 +...
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1,
add(`if`(issqr(8*j+1), x*b(n-j), 0), j=1..n)))
end:
a:= n-> (p-> add(coeff(p, x, i)*binomial(n, i), i=0..n))(b(n)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2017
MATHEMATICA
QP = QPochhammer; a[0] = 1; a[n_] := SeriesCoefficient[(QP[-1, x]*QP[x^2]/2 )^n, {x, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 04 2017 *)
PROG
(PARI) {a(n)=local(X); if(n<1, 1, X=x+x*O(x^n); polcoeff(eta(X^2)^(2*n)/eta(X)^n, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 29 2005
EXTENSIONS
a(0) changed to 1 by Alois P. Heinz, Jul 31 2017
STATUS
approved