login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106338
Triangle T, read by rows, equal to the matrix inverse of the triangle defined by [T^-1](n,k) = A075263(n,k)/n!, for n>=k>=0.
2
1, 1, -1, 1, -3, 2, 1, -9, 14, -6, 1, -45, 110, -90, 24, 1, -585, 1670, -1710, 744, -120, 1, -21105, 61670, -66150, 32424, -7560, 720, 1, -1858185, 5439350, -5864670, 2925384, -728280, 91440, -5040, 1, -367958745, 1077215510, -1161894510, 580489224, -145567800, 18961200, -1285200, 40320, 1
OFFSET
0,5
COMMENTS
Row sums are zero after the initial row. Absolute row sums equal A106339.
FORMULA
Also, T(n, k) = k!*A106340(n, k), where A106340 is the matrix inverse of the triangle formed from (n-k)!*A008278(n, k), n>=k>=0 and A008278 is the triangle of Stirling numbers of 2nd kind.
EXAMPLE
Triangle begins:
1;
1,-1;
1,-3,2;
1,-9,14,-6;
1,-45,110,-90,24;
1,-585,1670,-1710,744,-120;
1,-21105,61670,-66150,32424,-7560,720;
1,-1858185,5439350,-5864670,2925384,-728280,91440,-5040; ...
The matrix inverse T^-1 begins:
1;
1,1;
1,3/2,1/2;
1,2,7/6,1/6;
1,5/2,25/12,5/8,1/24;
1,3,13/4,3/2,31/120,1/120;
1,7/2,14/3,35/12,301/360,7/80,1/720; ...
where [T^-1](n,k) = A075263(n,k)/n!.
Each row n of the matrix inverse equals the initial
(n+1) fractional coefficients of (x/log(1+x))^n,
which are listed below for n=1,2,3,...,9:
1; 1/2,-1/12,1/24,-19/720,3/160,-863/60480,275/24192,...
1,1; 1/12,0,-1/240,1/240,-221/60480,19/6048,...
1,3/2,1/2; 0,1/240,-1/480,1/945,-11/20160,47/172800,...
1,2,7/6,1/6; -1/720,0,1/3024,-1/3024,199/725760,...
1,5/2,25/12,5/8,1/24; 0,-1/6048,1/12096,-19/725760,...
1,3,13/4,3/2,31/120,1/120; 1/30240,0,-1/57600,1/57600,...
1,7/2,14/3,35/12,301/360,7/80,1/720; 0,1/172800,...
1,4,19/3,5,81/40,23/60,127/5040,1/5040; -1/1209600,0,...
1,9/2,33/4,63/8,331/80,37/32,605/4032,17/2688,1/40320; 0,...
MATHEMATICA
rows = 10; Tinv = Table[(1/n!)*PadRight[CoefficientList[x^(n+1)*Sum[k^n * (1-x)^k, {k, 0, Infinity}], x], rows], {n, 0, rows-1}]; T = Inverse[Tinv ]; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 11 2017 *)
PROG
(PARI) T(n, k)=(M=matrix(n+1, n+1, m, j, if(m>=j, polcoeff((-x/log(1-x+x^2*O(x^n)))^m, j-1)))^-1)[n+1, k+1]
(PARI) T(n, k)=(-1)^n*k!*(matrix(n+1, n+1, r, c, if(r>=c, (r-c)!* sum(m=0, r-c+1, (-1)^(r-c+1-m)*m^r/m!/(r-c+1-m)!)))^-1)[n+1, k+1]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, May 01 2005
STATUS
approved