login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129964
Triangular sequence produced from symmetrical power of two matrices of the general type: M={{1, 2, 4, 8}, {2, 1, 2, 4}, {4, 2, 1, 2}, {8, 4, 2, 1}}.
1
1, 1, -1, -3, -2, 1, 9, 21, 3, -1, -27, -108, -102, -4, 1, 81, 459, 810, 438, 5, -1, -243, -1782, -4617, -4932, -1797, -6, 1, 729, 6561, 22437, 36045, 26811, 7251, 7, -1, -2187, -23328, -99144, -213192, -242190, -136080, -29088, -8, 1, 6561, 80919, 411156, 1109052, 1702782, 1475010, 660420, 116460, 9
OFFSET
1,4
COMMENTS
These matrices are related to symmetrical autocorrelation matrices. First column is alternating powers of 3. Absolute value row sum is ( new to OEIS too): Flatten[Join[{{1}}, Table[Apply[Plus,Abs[CoefficientList[CharacteristicPolynomial[ M[d, a], x], x]]], {d, 1, 10}]]]; {1, 2, 6, 34, 242, 1794, 13378, 99842, 745218, 5562370, 41518082}
REFERENCES
MathRev083099.nb at Mathematica tutorial: http://www.arec.umd.edu/mathrev/LecturesMR99.ZIP/
FORMULA
I'm sorry the definition is not simpler, but this is what seems to work: define t(n, m, d, a) := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; Matrix definition for general constant "a": M(d, a) := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; Constant: a=2; a(n)=CoefficientList(CharacteristicPloynomial(M(d,2))
EXAMPLE
{1},
{1, -1},
{-3, -2, 1},
{9, 21, 3, -1},
{-27, -108, -102, -4, 1},
{81, 459, 810, 438, 5, -1},
{-243, -1782, -4617, -4932, -1797, -6, 1}
MATHEMATICA
t[n_, m_, d_, a_] := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; M[d_, a_] := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; a = 2; a0 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[d, a], x], x], {d, 1, 10}]]; Flatten[a0]
CROSSREFS
Sequence in context: A106338 A282628 A262554 * A267328 A267425 A267562
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Jun 10 2007
STATUS
approved