login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106340
Triangle T, read by rows, equal to the matrix inverse of the triangle defined by [T^-1](n,k) = (n-k)!*A008278(n+1,k+1), for n>=k>=0, where A008278 is a triangle of Stirling numbers of 2nd kind.
3
1, -1, 1, 1, -3, 1, -1, 9, -7, 1, 1, -45, 55, -15, 1, -1, 585, -835, 285, -31, 1, 1, -21105, 30835, -11025, 1351, -63, 1, -1, 1858185, -2719675, 977445, -121891, 6069, -127, 1, 1, -367958745, 538607755, -193649085, 24187051, -1213065, 26335, -255, 1, -1, 157169540745, -230061795355, 82717588485
OFFSET
0,5
COMMENTS
Row sums are {1,0,-1,2,-3,4,-5,6,...}. Column 1 is A106341.
FORMULA
T(n, k) = A106338(n, k)/k!, for n>=k>=0.
EXAMPLE
Triangle T begins:
1;
-1,1;
1,-3,1;
-1,9,-7,1;
1,-45,55,-15,1;
-1,585,-835,285,-31,1;
1,-21105,30835,-11025,1351,-63,1;
-1,1858185,-2719675,977445,-121891,6069,-127,1;
1,-367958745,538607755,-193649085,24187051,-1213065,26335,-255,1;
...
Matrix inverse begins:
1;
1,1;
2,3,1;
6,12,7,1;
24,60,50,15,1;
120,360,390,180,31,1;
...
where [T^-1](n,k) = (n-k)!*A008278(n+1,k+1).
MATHEMATICA
rows = 10;
M = Table[If[r >= c, (r-c)! Sum[(-1)^(r-c-m+1) m^r/m!/(r-c-m+1)!, {m, 0, r-c+1}], 0], {r, rows}, {c, rows}] // Inverse;
T[n_, k_] := M[[n+1, k+1]];
Table[T[n, k], {n, 0, rows-1}, {k, 0, n}] (* Jean-François Alcover, Jun 27 2019, from PARI *)
PROG
(PARI) {T(n, k)=(matrix(n+1, n+1, r, c, if(r>=c, (r-c)!* sum(m=0, r-c+1, (-1)^(r-c+1-m)*m^r/m!/(r-c+1-m)!)))^-1)[n+1, k+1]}
(Sage)
def A106340_matrix(d):
def A130850(n, k): # EulerianNumber = A173018
return add(EulerianNumber(n, j)*binomial(n-j, k) for j in (0..n))
return matrix(ZZ, d, A130850).inverse()
A106340_matrix(8) # Peter Luschny, May 21 2013
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, May 01 2005
STATUS
approved