login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130850
Triangle read by rows, 0 <= k <= n, T(n,k) = Sum_{j=0..n} A(n,j)*binomial(n-j,k) where A(n,j) are the Eulerian numbers A173018.
9
1, 1, 1, 2, 3, 1, 6, 12, 7, 1, 24, 60, 50, 15, 1, 120, 360, 390, 180, 31, 1, 720, 2520, 3360, 2100, 602, 63, 1, 5040, 20160, 31920, 25200, 10206, 1932, 127, 1, 40320, 181440, 332640, 317520, 166824, 46620, 6050, 255, 1, 362880, 1814400, 3780000, 4233600, 2739240, 1020600, 204630, 18660, 511, 1
OFFSET
0,4
COMMENTS
Old name was: Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,2,0,3,0,4,0,5,0,6,0,...] where DELTA is the operator defined in A084938.
Vandervelde (2018) refers to this as the Worpitzky number triangle - N. J. A. Sloane, Mar 27 2018 [Named after the German mathematician Julius Daniel Theodor Worpitzky (1835-1895). - Amiram Eldar, Jun 24 2021]
Triangle given by A123125*A007318 (as infinite lower triangular matrices), A123125 = Euler's triangle, A007318 = Pascal's triangle; A007318*A123125 gives A046802.
Taylor coefficients of Eulerian polynomials centered at 1. - Louis Zulli, Nov 28 2015
A signed refinement is A263634. - Tom Copeland, Nov 14 2016
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of this entry (the Worpitsky triangle, A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1034 [a(438) and a(901) corrected by Georg Fischer, Nov 10 2021]
Nguyen-Huu-Bong, Some Combinatorial Properties of Summation Operators, J. Comb. Theory, Ser. A, Vo. 11, No. 3 (1971), pp. 213-221. See Table on page 214.
Sam Vandervelde, The Worpitzky Numbers Revisited, Amer. Math. Monthly, Vol. 125, No. 3 (2018), pp. 198-206.
FORMULA
T(n,k) = (-1)^k*A075263(n,k).
T(n,k) = (n-k)!*A008278(n+1,k+1).
T(n,n-1) = 2^n - 1 for n > 0. - Derek Orr, Dec 31 2015
E.g.f.: x/(e^(-x*t)*(1+x)-1). - Tom Copeland, Nov 14 2016
Sum_{k=1..floor(n/2)} T(n,2k) = Sum_{k=0..floor(n/2)} T(n,2k+1) = A000670(n). - Jacob Sprittulla, Oct 03 2021
EXAMPLE
Triangle begins:
1
1 1
2 3 1
6 12 7 1
24 60 50 15 1
120 360 390 180 31 1
720 2520 3360 2100 602 63 1
5040 20160 31920 25200 10206 1932 127 1
40320 181440 332640 317520 166824 46620 6050 255 1
362880 1814400 3780000 4233600 2739240 1020600 204630 18660 511 1
...
MATHEMATICA
Table[(n-k)!*StirlingS2[n+1, n-k+1], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Nov 15 2015 *)
PROG
(Sage)
from sage.combinat.combinat import eulerian_number
def A130850(n, k):
return add(eulerian_number(n, j)*binomial(n-j, k) for j in (0..n))
for n in (0..7): [A130850(n, k) for k in (0..n)] # Peter Luschny, May 21 2013
(PARI) t(n, k) = (n-k)!*stirling(n+1, n-k+1, 2);
tabl(nn) = for (n=0, 10, for (k=0, n, print1(t(n, k), ", ")); print()); \\ Michel Marcus, Nov 16 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Aug 20 2007
EXTENSIONS
New name from Peter Luschny, May 21 2013
STATUS
approved