OFFSET
0,2
COMMENTS
Essentially Stirling numbers of second kind - third external diagonal of Worpitzky triangle A028246.
REFERENCES
R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
FORMULA
E.g.f.: (1+2*x)/(1-x)^5.
a(n) = S2(n+3, n+1)*n! = n!*A001296(n+1). - Olivier Gérard, Sep 13 2016
MATHEMATICA
Table[StirlingS2[n+3, n+1]*n!, {n, 0, 20}]
PROG
(Magma) [(3*n+4)*Factorial(n+3)/24: n in [0..20]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=(3*n+4)*(n+3)!/24 \\ Charles R Greathouse IV, Jun 30 2017
(SageMath) [factorial(n)*stirling_number2(n+3, n+1) for n in range(21)] # G. C. Greubel, Nov 22 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved