login
A005460
a(n) = (3*n+4)*(n+3)!/24.
(Formerly M4433)
9
1, 7, 50, 390, 3360, 31920, 332640, 3780000, 46569600, 618710400, 8821612800, 134399865600, 2179457280000, 37486665216000, 681734237184000, 13071512982528000, 263564384219136000, 5575400435404800000, 123469776914964480000, 2856835183101419520000
OFFSET
0,2
COMMENTS
Essentially Stirling numbers of second kind - third external diagonal of Worpitzky triangle A028246.
REFERENCES
R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
FORMULA
E.g.f.: (1+2*x)/(1-x)^5.
a(n) = S2(n+3, n+1)*n! = n!*A001296(n+1). - Olivier Gérard, Sep 13 2016
MATHEMATICA
Table[StirlingS2[n+3, n+1]*n!, {n, 0, 20}]
PROG
(Magma) [(3*n+4)*Factorial(n+3)/24: n in [0..20]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=(3*n+4)*(n+3)!/24 \\ Charles R Greathouse IV, Jun 30 2017
(SageMath) [factorial(n)*stirling_number2(n+3, n+1) for n in range(21)] # G. C. Greubel, Nov 22 2022
CROSSREFS
Cf. A028246.
Sequence in context: A108869 A065429 A346846 * A053155 A367235 A355171
KEYWORD
nonn,easy
STATUS
approved