The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119879 Exponential Riordan array (sech(x),x). 18
 1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 5, 0, -6, 0, 1, 0, 25, 0, -10, 0, 1, -61, 0, 75, 0, -15, 0, 1, 0, -427, 0, 175, 0, -21, 0, 1, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 12465, 0, -5124, 0, 630, 0, -36, 0, 1, -50521, 0, 62325, 0, -12810, 0, 1050, 0, -45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums have e.g.f. exp(x)*sech(x) (signed version of A009006). Inverse of masked Pascal triangle A119467. Transforms the sequence with e.g.f. g(x) to the sequence with e.g.f. g(x)*sech(x). Coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent and Bernoulli number (triangle read by rows). Another version in A153641. - Philippe Deléham, Oct 26 2013 Relations to Green functions and raising/creation and lowering/annihilation/destruction operators are presented in Hodges and Sukumar and in Copeland's discussion of this sequence and 2020 pdf. - Tom Copeland, Jul 24 2020 LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28. T. Copeland, The Elliptic Lie Triad: Ricatti and KdV Equations, Infinigens, and Elliptic Genera, 2015. T. Copeland, Discussion of this sequence T. Copeland, SKipping over Dimensions, Juggling Zeros in the Matrix, 2020. A. Hodges and C. V. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. R. Soc. A Oct. 2007 vol 463 no. 463 2086 2401-2414. Peter Luschny, Additive decompositions of classical numbers via the Swiss-Knife polynomials [Tom Copeland, Oct 20 2015] Miguel Méndez and Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO}, 2017, Section 4.3, Example 4. Miguel A. Méndez and Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics 25(3) (2018), #P3.25. FORMULA Number triangle whose k-th column has e.g.f. sech(x)*x^k/k!. T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(1/2) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009 The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1; k even} binomial(n,k)*p{k}(0)*((n mod 2) - 1 + x^(n-k)). - Peter Luschny, Jul 16 2012 E.g.f.: exp(x*z)/cosh(x). - Peter Luschny, Aug 01 2012 Sum_{k=0..n} T(n,k)*x^k = A122045(n), A155585(n), A119880(n), A119881(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 27 2013 With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of this entry, A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020 Triangle equals P*((I + P^2)/2)^(-1), where P denotes Pascal's triangle A007318. - Peter Bala, Mar 07 2024 EXAMPLE Triangle begins: 1; 0, 1; -1, 0, 1; 0, -3, 0, 1; 5, 0, -6, 0, 1; 0, 25, 0, -10, 0, 1; -61, 0, 75, 0, -15, 0, 1; 0, -427, 0, 175, 0, -21, 0, 1; 1385, 0, -1708, 0, 350, 0, -28, 0, 1; MAPLE T := (n, k) -> binomial(n, k)*2^(n-k)*euler(n-k, 1/2): # Peter Luschny, Jan 25 2009 MATHEMATICA T[n_, k_] := Binomial[n, k] 2^(n-k) EulerE[n-k, 1/2]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Peter Luschny *) PROG (Sage) @CachedFunction def A119879_poly(n, x) : return 1 if n == 0 else add(A119879_poly(k, 0)*binomial(n, k)*(x^(n-k)-1+n%2) for k in range(n)[::2]) def A119879_row(n) : R = PolynomialRing(ZZ, 'x') return R(A119879_poly(n, x)).coeffs() # Peter Luschny, Jul 16 2012 # Alternatively: (Sage) # uses[riordan_array from A256893] riordan_array(sech(x), x, 9, exp=true) # Peter Luschny, Apr 19 2015 (PARI) {T(n, k) = binomial(n, k)*2^(n-k)*(2/(n-k+1))*(subst(bernpol(n-k+1, x), x, 1/2) - 2^(n-k+1)*subst(bernpol(n-k+1, x), x, 1/4))}; for(n=0, 5, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 25 2019 CROSSREFS Row sums are A155585. - Johannes W. Meijer, Apr 20 2011 Rows reversed: A081658. Cf. A109449, A153641, A162660. - Philippe Deléham, Oct 26 2013 Cf. A000182, A046802, A119467, A133314. Cf. A019538, A028246, A090582, A123125, A130850, A248727. Sequence in context: A191532 A333852 A179552 * A115714 A346242 A020768 Adjacent sequences: A119876 A119877 A119878 * A119880 A119881 A119882 KEYWORD easy,sign,tabl AUTHOR Paul Barry, May 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 08:42 EDT 2024. Contains 372773 sequences. (Running on oeis4.)