login
A128264
Triangle read by rows, 1 <= m <= n: t(n,m) = lcm(s(n,m), S(n,m)), where s(n,m) is an unsigned Stirling number of the first kind and S(n,m) is a Stirling number of the second kind.
2
1, 1, 1, 2, 3, 1, 6, 77, 6, 1, 24, 150, 175, 10, 1, 120, 8494, 450, 1105, 15, 1, 720, 1764, 69832, 7350, 700, 21, 1, 5040, 1659636, 906108, 1644867, 29400, 6118, 28, 1, 40320, 9314640, 357325100, 12447540, 7430619, 31752, 6006, 36, 1, 362880, 524580336
OFFSET
1,4
FORMULA
T(n,m) = lcm(A008277(n,m), |A008275(n,m)|). - R. J. Mathar, Sep 24 2007
EXAMPLE
Triangle starts
1;
1, 1;
2, 3, 1;
6, 77, 6, 1;
24, 150, 175, 10, 1;
120, 8494, 450, 1105, 15, 1;
720, 1764, 69832, 7350, 700, 21, 1;
MAPLE
A128264 := proc(n, m) lcm(combinat[stirling1](n, m), combinat[stirling2](n, m)) ; end: for n from 1 to 10 do for m from 1 to n do printf("%d, ", A128264(n, m)) ; od: od: # R. J. Mathar, Sep 24 2007
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(lcm(stirling(n, k, 1), stirling(n, k, 2)), ", "); ); print(); ); } \\ Michel Marcus, Aug 18 2015
CROSSREFS
Cf. A128265.
Cf. A000142 (T(n,1)), A000217 (T(n, n-1)).
Sequence in context: A130850 A130405 A058372 * A375258 A232435 A114858
KEYWORD
nonn,tabl
AUTHOR
Leroy Quet, Feb 22 2007
EXTENSIONS
More terms from R. J. Mathar, Sep 24 2007
STATUS
approved